Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Colloid Interface Sci ; 669: 518-528, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723540

RESUMEN

Supercapacitors have the advantages of fast charging and discharging speeds, high power density, long cycle life, and wide operating temperature range. They are widely used in portable electronic equipment, rail transit, industry, military, aerospace, and other fields. The design and preparation of low-cost, high-performance electrode materials still pose a bottleneck that hinders the development of supercapacitors. In this paper, coal was used as the raw material, and the coal-based porous carbon electrode material was constructed using the iodine intercalation-assisted activation method and used for supercapacitors. The CK-700 electrode exhibits excellent charge storage performance in a 6 M potassium hydroxide (KOH) electrolyte, with a maximum specific capacitance of 350 F/g at a current density of 0.5 A/g. In addition, it has an excellent rate performance (310 F/g at 1 A/g) and cycle stability (capacitance retention up to 91.7 % after 30000 cycles). This work provides a method for realizing high-quality, high-yield and low-cost preparation of coal-based porous carbon, and an idea for improving the performance of supercapacitors.

2.
Int J Biol Macromol ; 268(Pt 2): 131827, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670204

RESUMEN

Cell culturing is a cornerstone of tissue engineering, playing a crucial role in tissue regeneration, drug screening, and the study of disease mechanisms. Among various culturing techniques, 3D culture systems, particularly those utilizing suspended fiber scaffolds, offer a more physiologically relevant environment than traditional 2D monolayer cultures. These 3D scaffolds enhance cell growth, differentiation, and proliferation by mimicking the in vivo cellular milieu. This review focuses on the critical role of suspended fiber scaffolds in tissue engineering. We compare the effectiveness of 3D suspended fiber scaffolds with 2D culture systems, discussing their respective benefits and limitations in the context of tissue regeneration. Furthermore, we explore the preparation methods of suspended fiber scaffolds and their potential applications. The review concludes by considering future research directions for optimizing suspended fiber scaffolds to address specific challenges in tissue regeneration, underscoring their significant promise in advancing tissue engineering and regenerative medicine.

3.
Front Pharmacol ; 15: 1345522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510646

RESUMEN

Cancer cells have adapted to rapid tumor growth and evade immune attack by reprogramming their metabolic pathways. Glutamine is an important nitrogen resource for synthesizing amino acids and nucleotides and an important carbon source in the tricarboxylic acid (TCA) cycle and lipid biosynthesis pathway. In this review, we summarize the significant role of glutamine metabolism in tumor development and highlight the vulnerabilities of targeting glutamine metabolism for effective therapy. In particular, we review the reported drugs targeting glutaminase and glutamine uptake for efficient cancer treatment. Moreover, we discuss the current clinical test about targeting glutamine metabolism and the prospective direction of drug development.

4.
J Fluoresc ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451363

RESUMEN

In this study, we successfully synthesized an innovative 1D-Zn(II) coordination polymer, denoted as [Zn(L)(H2O)2]n, employing the Schiff base {4-[(2-hydroxy-3-methoxy-benzylidene)-amino]-benzoic acid} (H2L). The Schiff base was obtained through the reaction of 4-aminobenzoic acid and o-vanillin under slow volatilization conditions. The resulting compound exhibits remarkable green fluorescence emission properties, indicating its potential as a novel fluorescent and sensing material. Hydrogels based on hyaluronic acid (HA) and carboxymethyl chitosan (CMCS), denoted as HA/CMCS hydrogels, were synthesized using a chemical method. Additionally, we utilized bleomycin as a model drug to synthesize a novel bleomycin metal gel and assessed its anti-hemangioma activity. Molecular docking simulations revealed that the Zn complex can form stable bonds with the key target, involving the methoxy and carboxyl groups on the Zn complex.

5.
Food Chem ; 445: 138661, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350195

RESUMEN

To improve the poor water solubility and oral bioavailability of tyrosol, novel tyrosol liposomes (Tyr-LPs) were prepared by pH-driven method. Fourier transform infrared (FTIR) absorption spectra and X-ray diffraction (XRD) analysis indicated that Tyr-LPs were successfully encapsulated and tyrosol was in an amorphous state in liposomes. When tyrosol content in Tyr-LP was 1.33 mg/ml and the Tyr:LP (mass ratio) = 1:2, favorable dispersibility of Tyr-LP was exhibited, with an instability index of 0.049 ± 0.004, PDI of 0.274 ± 0.003, and the EE of 94.8 ± 2.5 %. In vivo pharmacokinetic studies showed that after oral administration of tyrosol or Tyr-LP (Tyr:LP = 1:2), concentration-versus-time curve (AUC0-720mins) and maximum concentration (Cmax) values of Tyr-LP was respectively 1.5-fold (P < 0.01) and 2.25-fold (P < 0.01) higher than tyrosol, which indicated that the oral bioavailability of tyrosol was effectively improved in Tyr-LPs. Our study thereby provides theoretical support for the application of Tyr-LP for optimal delivery of tryosol.


Asunto(s)
Lipopolisacáridos , Liposomas , Alcohol Feniletílico/análogos & derivados , Ratas , Animales , Disponibilidad Biológica , Ratas Sprague-Dawley , Solubilidad , Administración Oral , Concentración de Iones de Hidrógeno
6.
Bioact Mater ; 35: 401-415, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38384987

RESUMEN

Peripheral nerve injury (PNI) seriously affects the health and life of patients, and is an urgent clinical problem that needs to be resolved. Nerve implants prepared from various biomaterials have played a positive role in PNI, but the effect should be further improved and thus new biomaterials is urgently needed. Ovalbumin (OVA) contains a variety of bioactive components, low immunogenicity, tolerance, antimicrobial activity, non-toxicity and biodegradability, and has the ability to promote wound healing, cell growth and antimicrobial properties. However, there are few studies on the application of OVA in neural tissue engineering. In this study, OVA implants with different spatial structures (membrane, fiber, and lyophilized scaffolds) were constructed by casting, electrospinning, and freeze-drying methods, respectively. The results showed that the OVA implants had excellent physicochemical properties and were biocompatible without significant toxicity, and can promote vascularization, show good histocompatibility, without excessive inflammatory response and immunogenicity. The in vitro results showed that OVA implants could promote the proliferation and migration of Schwann cells, while the in vivo results confirmed that OVA implants (the E5/70% and 20 kV 20 µL/min groups) could effectively regulate the growth of blood vessels, reduce the inflammatory response and promote the repair of subcutaneous nerve injury. Further on, the high-throughput sequencing results showed that the OVA implants up-regulated differential expression of genes related to biological processes such as tumor necrosis factor-α (TNF-α), phosphatidylinositide 3-kinases/protein kinase B (PI3K-Akt) signaling pathway, axon guidance, cellular adhesion junctions, and nerve regeneration in Schwann cells. The present study is expected to provide new design concepts and theoretical accumulation for the development of a new generation of nerve regeneration implantable biomaterials.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38294627

RESUMEN

In this study, we investigated the protective role of Mzb1 in atherosclerotic plaque vulnerability. To explore the impact of Mzb1, we analyzed Mzb1 expression, assessed apoptosis, and evaluated mitochondrial function in atherosclerosis (AS) mouse models and human vascular smooth muscle cells (HVSMCs). We observed a significant decrease in Mzb1 expression in AS mouse models and ox-LDL-treated HVSMCs. Downregulation of Mzb1 increased ox-LDL-induced apoptosis and cholesterol levels of HVSMCs, while Mzb1 overexpression alleviated these effect. Mzb1 was found to enhance mitochondrial function, as evidenced by restored ATP synthesis, mitochondrial membrane potential, and reduced mtROS production. Moreover, Mzb1 overexpression attenuated atherosclerotic plaque vulnerability in ApoE-/- mice. Our findings suggest that Mzb1 overexpression regulates the AMPK/SIRT1 signaling pathway, leading to the attenuation of atherosclerotic plaque vulnerability. This study provides compelling evidence for the protective effect of Mzb1 on atherosclerotic plaques by alleviating apoptosis and modulating mitochondrial function in ApoE-/- mice.

8.
J Pediatr Nurs ; 75: e112-e118, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38184478

RESUMEN

PURPOSE: This study aimed to evaluate the associations between parental readiness for discharge and neonatal growth. DESIGN AND METHODS: This cross-sectional study included 549 newborns whose parents filled out the Newborn-Parental Readiness for Discharge Scale (N-PRDS).Additionally, data on birth weight, length, and head circumference were collected.The total N-PRDS scores were divided into three levels in terms of readiness: low, intermediate, and high readiness. Parents and infants were followed up 42 days after the birth, and the weight, length, and head circumference of the newborns were measured at the hospital. RESULTS: A total of 306 data were obtained. The generalized linear mixed model (GLMM) showed that time and parental readiness had an interaction effect on the weight, length and head circumference of infants. The difference in weight between infants under the high and low readiness conditions at 42 days increased by 0.357 kg compared to the difference at birth. The difference in length between high readiness infants and low readiness infants at 42 days increased by 2.155 cm compared to the difference at birth. The difference between the infants' head circumference under the high and low readiness conditions at 42 days was 0.873 cm higher than that at birth. CONCLUSIONS: High readiness for discharge could promote an increase in infant weight, length,and head circumference at 42 days after birth. PRACTICE IMPLICATIONS: Nurses should assess parental readiness prior to the discharge of newborns by using the N-PRDS and provide discharge guidance and education to newborns' parents based on the outcomes of this scale.


Asunto(s)
Padres , Alta del Paciente , Lactante , Recién Nacido , Humanos , Estudios Transversales , Peso al Nacer , China , Hospitales
9.
Pathol Res Pract ; 253: 154969, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029715

RESUMEN

Endoplasmic reticulum (ER) stress refers to a condition where the normal functioning of the ER is disrupted due to a variety of cellular stress factors. As a result, there is an accumulation of unfolded and misfolded proteins within the ER. Numerous studies have shown that ER stress can exacerbate inflammatory reactions and contribute to the development of various inflammatory diseases. However, the role of ER stress in the stability of atherosclerotic plaques remains poorly understood. In this study, we aimed to explore the potential impact of a specific ER stress inhibitor known as 4-phenyl butyric acid (4-PBA) on atherosclerosis in mice. The mice were fed a high-fat diet, and treatment with 4-PBA significantly improved the stability of the atherosclerotic plaques. This was evidenced by a reduction in oxidative stress and an increase in circadian locomotor output cycles kaput (CLOCK) protein and mRNA expression within the plaques. Additionally, 4-PBA reduced the expression of ER stress-related proteins and decreased apoptosis in the atherosclerotic plaques. In vitro investigation, we observed the effect of 4-PBA on vascular smooth muscle cells (VSMCs) that were exposed to oxidized low-density lipoprotein (ox-LDL), a significant contributor to the development of atherosclerosis. 4-PBA reduced reactive oxygen species (ROS) production and attenuated apoptosis, GRP78 and CHOP protein expression in ox-LDL-Induced VSMCs via up-regulating CLOCK expression. However, when the short hairpin RNA against CLOCK (sh-CLOCK) was introduced to the VSMCs, the protective effect of 4-PBA was abolished. This suggests that the up-regulation of CLOCK expression is crucial for the beneficial effects of 4-PBA on atherosclerotic plaque stability. This finding suggests that targeting ER stress and modulating CLOCK protein levels might be a promising way to enhance the stability of atherosclerotic plaques.


Asunto(s)
Aterosclerosis , Butilaminas , Placa Aterosclerótica , Animales , Ratones , Proteínas CLOCK/farmacología , Aterosclerosis/metabolismo , Apoptosis , Estrés del Retículo Endoplásmico
11.
Biomater Sci ; 11(22): 7296-7310, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37812084

RESUMEN

The purpose of nerve regeneration via tissue engineering strategies is to create a microenvironment that mimics natural nerve growth for achieving functional recovery. Biomaterial scaffolds offer a promising option for the clinical treatment of large nerve gaps due to the rapid advancement of materials science and regenerative medicine. The design of biomimetic scaffolds should take into account the inherent properties of the nerve and its growth environment, such as stiffness, topography, adhesion, conductivity, and chemical functionality. Various advanced techniques have been employed to develop suitable scaffolds for nerve repair. Since neuronal cells have electrical activity, the transmission of bioelectrical signals is crucial for the functional recovery of nerves. Therefore, an ideal peripheral nerve scaffold should have electrical activity properties similar to those of natural nerves, in addition to a delicate structure. Piezoelectric materials can convert stress changes into electrical signals that can activate different intracellular signaling pathways critical for cell activity and function, which makes them potentially useful for nerve tissue regeneration. However, a comprehensive review of piezoelectric materials for neuroregeneration is still lacking. Thus, this review systematically summarizes the development of piezoelectric materials and their application in the field of nerve regeneration. First, the electrical signals and natural piezoelectricity phenomenon in various organisms are briefly introduced. Second, the most commonly used piezoelectric materials in neural tissue engineering, including biocompatible piezoelectric polymers, inorganic piezoelectric materials, and natural piezoelectric materials, are classified and discussed. Finally, the challenges and future research directions of piezoelectric materials for application in nerve regeneration are proposed.


Asunto(s)
Materiales Biocompatibles , Andamios del Tejido , Andamios del Tejido/química , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos , Medicina Regenerativa , Regeneración Nerviosa
12.
Int J Biol Macromol ; 253(Pt 4): 127015, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37758111

RESUMEN

Peripheral nerve injuries (PNI) currently have limited therapeutic efficacy, and functional scaffolds have been shown to be effective for treating PNI. Ovalbumin (OVA) is widely used as a natural biomaterial for repairing damaged tissues due to its excellent biocompatibility and the presence of various bioactive components. However, there are few reports on the repair of PNI by ovalbumin. In this study, a novel bionic functionalized topological scaffold based on ovalbumin and grafted with tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide was constructed by micro-molding method and surface-biomodification technology. The scaffolds were subjected to a series of evaluations in terms of morphology, mechanics, hydrophilicity, and biocompatibility, and the related molecular mechanisms were further penetrated. The results showed that the scaffolds prepared in this study had aligned ridge/groove structure, good mechanical properties and biocompatibility, and could be used as carriers to slowly release YIGSR, which effectively promoted the proliferation, migration and elongation of Schwann Cells (SCs), and significantly up-regulated the gene expression related to proliferation, apoptosis, migration and axon regeneration. Therefore, the bionic functional topological scaffold has significant application potential for promoting peripheral nerve regeneration and provides a new therapeutic option for repairing PNI.


Asunto(s)
Axones , Traumatismos de los Nervios Periféricos , Humanos , Ovalbúmina/metabolismo , Regeneración Nerviosa/fisiología , Células de Schwann , Péptidos/química , Traumatismos de los Nervios Periféricos/terapia , Andamios del Tejido/química
13.
Vaccines (Basel) ; 11(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37631879

RESUMEN

OBJECTIVE: In this paper, we aim to show that the immunogenicity of the lyophilized human rabies vaccine (Vero cells) (investigational vaccine) developed by Dalian Aleph Biomedical Co., Ltd. in healthy participants aged 10-60 years old is non-inferior to the lyophilized PVRV (positive control) manufactured by Liaoning Chengda Biotechnology Co., Ltd. (Shenyang, China), and that its safety is clinically acceptable. METHOD: A total of 2776 participants were enrolled in this study and divided into four groups: a five-dose test group, a five-dose control group, a four-dose test group, and a four-dose control group. The patients in the four-dose groups (Zagreb) were vaccinated on Days 0 (two doses), 7 (one dose), and 21 (one dose), and those in the five-dose groups (Essen) were vaccinated on Days 0, 3, 7, 14, and 28 (one dose each). The rabies-virus-neutralizing antibody assay with the RFFIT was used to assess the immunogenicity, and the adverse events (AEs) and serious adverse events (SAEs) were identified and collated. RESULTS: The positive seroconversion rate was up to 100% on Days 14 and 35/42 after vaccination following any procedures in pre-immunization antibody-negative participants, and the positive seroconversion rate and geometric mean concentration (GMC) of the test groups (Zagreb and Essen vaccination procedures) was not inferior to that of the control groups. On Day 7 after vaccination, the immunogenicity of the Zagreb procedure with two doses of the vaccine on Day 0 was superior to the Essen procedure with one dose of vaccine, that is, the former had a higher seroconversion rate and RVNA titer. The non-inferiority criterion of immunogenicity was met for the whole population, the population aged 10-18 years and ≥18 years, and the pre-immunization antibody-positive population. The incidences of all AEs, solicited AEs, and unsolicited AEs in both groups were not statistically significant, and no vaccination-related SAEs were observed. CONCLUSION: The investigated vaccine is safe, its immunogenicity is non-inferior to that of the control vaccine, and the efficacy of the Zagreb procedure is superior to that of the Essen procedure 7 days after the first dose.

14.
Hum Vaccin Immunother ; 19(2): 2245721, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37587615

RESUMEN

This study aimed to evaluate the immunogenicity non-inferiority and safety of the quadrivalent inactivated split-virion influenza vaccine in participants ≥ 3 years old. A total of 3,328 participants were enrolled. Participants 3-8 years old were administered one or two doses of the investigational vaccine or one dose of the control vaccine, whereas the other participants were administered only one dose of the investigational or control vaccine. The immunogenicity and occurrence of adverse events (AEs) after 30 days of full-course vaccination and serious adverse events (SAEs) within 6 months after full-course vaccination were assessed. The sero-conversion rates (SCRs) of anti-H1N1, H3N2, B(Y), and B(V) antibodies in the test group were 74.64%, 87.40%, 82.66%, and 78.89%, respectively, and their geometric mean titers were 1:250.13, 1:394.54, 1:200.84, and 1:94.91, respectively, which were non-inferior to those in the control group. The SCRs and sero-protection rates in the two-dose group of participants 3-8 years old were greater than those in the one-dose group. The incidences of total AEs and adverse reactions in the test group were 31.6% and 21.7%, respectively, which were close to those in the control group. In the two-dose group, the incidence of adverse reactions was considerably lower in the second dose (5.5%) than in the first dose (14.7%). Most AEs were grade 1 in severity, and no SAEs were recorded. The investigational vaccine had immunogenicity non-inferior to the control vaccine, and two doses were more effective than one dose in participants 3-8 years old, with a good overall safety.Trial registration: CTR20200715.


People in China are frequently infected by influenza viruses in specific seasons, causing a large burden of disease. Influenza viruses have distinct phenotypes depending on the season. Therefore, vaccines that can effectively prevent the infection of various influenza virus phenotypes need to be developed. The quadrivalent inactivated split-virion influenza vaccine is effective against four influenza virus phenotypes. In this trial, the immunogenicity and safety of the quadrivalent inactivated split-virion influenza vaccine (investigational vaccine) developed by Dalian Aleph Biomedical Co., Ltd. were evaluated. A total of 3,328 participants ≥ 3 years old were included. Participants 3­8 years old were further divided based on the presence or absence of a history of influenza vaccination. Those participants without a vaccination history were administered one or two doses of the investigational vaccine or one dose of a marketed quadrivalent influenza vaccine (control vaccine), and those participants with a vaccination history were administered one dose of the investigational or control vaccine. This study showed for the first time that the immunogenicity and safety of the investigational vaccine were not inferior to those of the control vaccine and that the two-dose procedure induced a good immune effect in the 3­8-year-old group. In conclusion, administration of the investigational vaccine can prevent seasonal influenza in populations aged ≥ 3 years.


Asunto(s)
Inmunogenicidad Vacunal , Vacunas contra la Influenza , Niño , Preescolar , Humanos , Método Doble Ciego , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Vacunas Combinadas
15.
Food Chem ; 429: 136833, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454620

RESUMEN

Germination is a natural green technology to improve the nutritional and techno-functional quality of plant-based proteins. In this study, the mechanism of improving the functional and antioxidant properties of black and white sesame protein isolates (SPI) through germination process was investigated. Results showed that the surface hydrophobicity and sulfhydryl content increased significantly after germination, which were supported by multispectral analysis suggesting the exposed and unfolded conformational transition of germinated SPI. Moreover, the increased particle size was observed by microscopy analysis and reducing electrophoresis, which indicated that depolymerized protein molecules were rearranged to form protein aggregates during germination. The structural modification induced by germination contributed to the superior solubility (increased to 3.15-fold and 2.36-fold at pH 8 for black and white SPI, respectively), foaming capacity (increased to 3.99-fold and 1.69-fold, respectively), emulsifying ability (increased to 2.84-fold and 2.71-fold, respectively), and diverse chemical antioxidant activities (increased up to 5.60-fold) of SPI in both varieties. This was the first comprehensive study to investigate germination as a promising technology for obtaining high-quality SPI.


Asunto(s)
Antioxidantes , Sesamum , Proteínas de Soja/química , Sesamum/química , Proteínas de Plantas/genética , Interacciones Hidrofóbicas e Hidrofílicas
16.
Food Funct ; 14(12): 5716-5727, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37279032

RESUMEN

Propionic acid (PA) is a water-soluble substance that has been shown to be beneficial for improving colon-related diseases. However, its appliance as a nutraceutical ingredient is hampered by its volatility, irritating odor, and easy absorption in the stomach and small intestine. A chitosan solution containing propionic acid was dispersed in a palm oil/corn oil mixture with polyglycerol polyricinoleate (PGPR) to form PA-loaded water-in-oil (W/O) emulsions. The stability of the emulsions was improved by the inclusion of both chitosan and palm oil, where the chitosan reduced the emulsion particle size and palm oil increased the viscosity. The thermal volatility and storage stability of the encapsulated propionic acid were significantly improved due to the stability of emulsion structure and hydrogen bonding between chitosan and propionic acid. Around 56% of propionic acid remained within the aqueous phase after the simulated gastrointestinal digestion. Our results indicate that W/O emulsions might be candidates as colon-targeted delivery systems for propionic acid, which could be beneficial for maintaining colon health.


Asunto(s)
Quitosano , Agua , Emulsiones/química , Volatilización , Aceite de Palma , Agua/química , Tamaño de la Partícula
17.
Front Public Health ; 11: 1106499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304120

RESUMEN

Objective: This study aims to investigate the changes in admission appropriateness after patients were admitted and provide a reference for physicians to make admission decisions and for the supervision of medical service behavior by the medical insurance regulatory department. Methods: Medical records of 4,343 inpatients were obtained based on the largest and most capable public comprehensive hospital in four counties in central and western China for this retrospective study. The binary logistic regression model was employed to examine the determinants of changes in admission appropriateness. Results: Nearly two-in-thirds (65.39%) of the 3,401 inappropriate admissions changed to appropriate at discharge. Age, type of medical insurance, medical service type, severity of the patient upon admission, and disease category were found to be associated with the changes in the appropriateness of admission. Older patients (OR = 3.658, 95% CI [2.462-5.435]; P < 0.001) were more likely to go from "inappropriate" to "appropriate" than younger counterparts. Compared with circulatory diseases, the case evaluated as "appropriate" at discharge was more frequent in the urinary diseases (OR = 1.709, 95% CI [1.019-2.865]; P = 0.042) and genital diseases (OR = 2.998, 95% CI [1.737-5.174]; P < 0.001), whereas the opposite finding was observed for patients with respiratory diseases (OR = 0.347, 95% CI [0.268-0.451]; P < 0.001) and skeletal and muscular diseases (OR = 0.556, 95% CI [0.355-0.873]; P = 0.011). Conclusions: Many disease characteristics gradually emerged after the patient was admitted, thus the appropriateness of admission changed. Physicians and regulators need to take a dynamic view of disease progression and inappropriate admission. Aside from referring to the appropriateness evaluation protocol (AEP), they both should pay attention to individual and disease characteristics to make a comprehensive judgment, and strict control and attention should be paid to the admission of respiratory, skeletal, and muscular diseases.


Asunto(s)
Hospitalización , Hospitales de Condado , Humanos , Estudios Retrospectivos , Pacientes , China/epidemiología
18.
Int J Biol Macromol ; 246: 125518, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37353122

RESUMEN

Silk fibroin (SF) as a natural polymer has a long history of application in various regenerative medicine fields, but there are still many shortcomings in silk fibroin for using as nerve scaffolds, which limit its clinical application in peripheral nerve regeneration (PNR). In this work, a multi-scale and multi-level metformin (MF)-loaded silk fibroin scaffold with anisotropic micro-nano composite topology was prepared by micromolding electrospinning for accelerating PNR. The scaffolds were characterized for morphology, wettability, mechanical properties, degradability, and drug release, and Schwann cells (SCs) and dorsal root ganglia (DRG) were cultured on the scaffolds to assess their effects on neural cell behavior. Finally, the gene expression differences of neural cells cultured on scaffolds were analyzed by gene sequencing and RT-qPCR to explore the possible signaling pathways and mechanisms. The results showed that the scaffolds had excellent mechanical properties and hydrophilicity, slow degradation rate and drug release rate, which were enough to support the repair of peripheral nerve injury for a long time. In Vitro cell experiments showed that the scaffolds could significantly promote the orientation of SCs and axons extension of DRG. Gene sequencing and RT-qPCR revealed that the scaffolds could up-regulate the expression of genes related to SCs proliferation, adhesion, migration, and myelination. In summary, the scaffolds hold great potential for promoting PNR at the micro/nano multiscale and physical/chemical levels and show promising application for the treatment of peripheral nerve injury in the future.


Asunto(s)
Fibroínas , Metformina , Traumatismos de los Nervios Periféricos , Fibroínas/administración & dosificación , Fibroínas/química , Traumatismos de los Nervios Periféricos/terapia , Anisotropía , Conformación Proteica en Lámina beta , Animales , Ratas , Línea Celular , Metformina/administración & dosificación , Células de Schwann , Ganglios Espinales/citología , Nervio Ciático/lesiones
19.
Int J Exp Pathol ; 104(5): 258-268, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37381118

RESUMEN

Haemangiomas (HAs) are prevalent vascular endothelial cell tumours. With respect to the possible involvement of HIF-1α in HAs, we have explored its role in haemangioma endothelial cell (HemEC) proliferation and apoptosis. shRNA HIF-1α and pcDNA3.1 HIF-α were manipulated into HemECs. HIF-α, VEGF, and VEGFR-2 mRNA and protein levels were assessed by qRT-PCR and Western blotting. Cell proliferation and viability, cell cycle and apoptosis, migration and invasion, and ability to form tubular structures were assessed by colony formation assay, CCK-8, flow cytometry, Transwell assay, and tube formation assay. Cell cycle-related protein levels, and VEGF and VEGFR-2 protein interaction were detected by Western blot and immunoprecipitation assays. An Haemangioma nude mouse model was established by subcutaneous injection of HemECs. Ki67 expression was determined by immunohistochemical staining. HIF-1α silencing suppressed HemEC neoplastic behaviour and promoted apoptosis. HIF-1α facilitated VEGF/VEGFR-2 expression and the VEGF had interacted with VEGFR-2 at protein - protein level. HIF-1α silencing arrested HemECs at G0/G1 phase, diminished Cyclin D1 protein level, and elevated p53 protein level. VEGF overexpression partially abrogated the effects of HIF-1α knockdown on inhibiting HemEC malignant behaviours. Inhibiting HIF-1α in nude mice with HAs repressed tumour growth and Ki67-positive cells. Briefly, HIF-1α regulated HemEC cell cycle through VEGF/VEGFR-2, thus promoting cell proliferation and inhibiting apoptosis.


Asunto(s)
Células Endoteliales , Hemangioma , Ratones , Animales , Humanos , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/farmacología , Ratones Desnudos , Antígeno Ki-67 , Línea Celular Tumoral , Apoptosis , Hemangioma/patología , Proliferación Celular
20.
Biotechnol Genet Eng Rev ; : 1-10, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249204

RESUMEN

OBJECTIVE: The purpose of this paper is to summarize the blood purification technology applied in patients with severe fever with thrombocytopenia syndrome (SFTS) in the clinical treatment effect. METHODS: The medical records of 96 patients with severe SFTS admitted to Weihai Municipal Hospital affiliated to Shandong University from May 2014 to November 2019 were retrospectively analyzed, and they were divided into survival group and death group. The differences in basic data test indexes and treatment method selection during intensive care unit (ICU) admission between the two groups were significantly analyzed, and the indexes with statistically significant differences were included in the multivariate logistic regression analysis related to prognosis. RESULTS: There were no statistically significant differences in age, sex composition, white blood cell count, platelet count, creatine kinase (CK), activated partial thromboplastin time (APTT), serum creatinine and hemofiltration renal replacement therapy between the survival group and the death group. There were statistically significant differences between the two groups in viral load bilirubin and the treatment methods of plasma exchange (PE) or hemoperfusion (HP). Plasma exchange group (78 cases), hemofiltration group (12 cases), hemoperfusion group (6 cases), plasma exchange and hemoperfusion and other blood purification treatment of the prognosis were statistically different. CONCLUSIONS: Compared with the three blood purification methods, plasmapheresis has a significant effect on virus removal, improvement of coagulation function and survival rate in patients with severe SFTS. Hemofiltration plays a role in removing inflammatory mediators, replacing renal function, maintaining electrolytes and acid-base balance, but not in removing viruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...